

## Exercises for 'Functional Analysis 2' [MATH-404]

(10/03/2025)

### Ex 4.1 (Linear maps on $L^p$ with $0 < p < 1$ )

Let  $p \in (0, 1)$ ; let  $L^p$  denote the space of Lebesgue measurable functions on  $\mathbb{R}$  for which

$$\rho(f) = \int_{\mathbb{R}} |f(x)|^p dx < +\infty,$$

endowed with the topology induced by the metric  $d(f, g) = \rho(f - g)$ .

a) Show that the only convex and open subsets of  $L^p$  are  $\emptyset$  and  $L^p$  itself.

**Hint:** Since  $L^p$  is a TVS, wlog the open set contains the origin. Given  $r > 0$  and  $f \in L^p$ , write  $f = \sum_{i=0}^n \lambda_i g_i$  with  $\lambda_i \in (0, 1)$  and  $\sum_i \lambda_i = 1$  and functions  $g_i = \lambda_i^{-1} f \chi_{I_i}$ , where the intervals  $I_i$  form a partition of  $\mathbb{R}$  such that  $\rho(g_i) < r$  for each  $i$ .

b) Let  $T: L^p \rightarrow X$ , where  $X$  is a LCTVS, be a continuous linear mapping. Prove that

$$Tf = 0 \quad \text{for all } f \in L^p.$$

c) Deduce that  $(L^p)' = \{0\}$ .

### Solution 4.1 :

a) Let  $U \subset L^p$  be convex, open and non-empty. We must show  $U = L^p$ . Since the metric is translation invariant and convexity is a translation-invariant property of sets, we may assume  $0 \in U$ . Thus since the topology is generated by the metric, there exists  $r > 0$  such that  $B_r = \{f : \rho(f) < r\} \subset U$ .

It suffices to prove that for any  $f \in L^p$ ,  $f \in \text{co}(B_r)$ , the convex hull of  $B_r$ ; namely  $f = \sum_{i=1}^n \lambda_i f_i$  for some functions  $f_1, \dots, f_n \in B_r$  and some  $\lambda_1, \dots, \lambda_n \in [0, 1]$  with  $\sum_{i=1}^n \lambda_i = 1$ . Since we know nothing about  $f$ , it makes sense to start by looking for such a decomposition with  $\lambda_i = 1/n$  for all  $i$ . Recall in sheet 2 we were able to show the unit ball was not convex by considering convex combinations of functions with disjoint supports, taking this as our inspiration we seek to choose the  $f_i$  all with disjoint supports. In particular, we will prove that we can decompose  $\mathbb{R}$  into  $n$  subintervals  $I_1, \dots, I_n$  with disjoint interiors such that

$$\bigcup_{j=1}^n I_j = \mathbb{R} \quad \text{and} \quad \int_{I_i} |f(x)|^p dx \leq \frac{\rho(f)}{n} \quad (1)$$

We can then set  $f_i = nf \cdot \mathbb{1}_{I_i}$  (here  $\mathbb{1}_{I_i}(x)$  is the cut-off function equal to 1 if  $x \in I_i$  and 0 if  $x \notin I_i$ ) for which

$$\rho(f_i) = n^p \int_{I_i} |f(x)|^p dx \leq n^{p-1} \rho(f)$$

for each  $i = 1, \dots, n$ . Choosing  $n > \left(\frac{\rho(f)}{r}\right)^{\frac{1}{1-p}}$  sufficiently large (using  $p < 1$ ) each  $f_i \in B_r$  and so

$$f = \sum_{i=1}^n \frac{1}{n} f_i \in \text{co}(B_r)$$

and we are done.

We will now prove (1). Consider the function

$$F(y) = \int_{-\infty}^y |f(x)|^p dx,$$

This is continuous (e.g. by the monotone convergence theorem) and increasing with  $\lim_{y \rightarrow -\infty} F(y) = 0$  and  $\lim_{y \rightarrow \infty} F(y) = \rho(f)$ . Thus, for each  $z_i = \frac{i}{n} \rho(f)$ ,  $i = 1, \dots, n-1$ , we can find  $y_i$  such that  $F(y_i) = z_i$ . This gives us a partition  $-\infty =: y_0 < y_1 < \dots < y_{n-1} < y_n := \infty$  such that

$$\int_{y_{i-1}}^{y_i} |f(x)|^p dx = F(y_i) - F(y_{i-1}) = \rho(f)/n.$$

(with appropriate adjustments at  $y_0$  at  $y_n$ ).

**b)** Let  $U$  be a neighbourhood of 0 in  $X$ . Since  $X$  is a LCTVS,  $U$  contains a convex open neighbourhood  $U'$  of 0. By continuity,  $T^{-1}U'$  is open, and by linearity it contains 0 and is convex (check that if  $Tf, Tg \in U'$  then  $T(tf + (1-t)g) \in U'$  for all  $t \in [0, 1]$ ). Since  $T^{-1}U'$  is non-empty we deduce from part (a) that it is all of  $L^p$ , i.e.  $Tf \in U' \subset U$  for all  $f \in L^p$ . Since  $U$  was an arbitrary neighbourhood of 0 and  $X$  is Hausdorff (as a LCTVS), this implies that  $Tf = 0$  for all  $f \in L^p$ .

**c)** Immediate, since any  $T \in (L^p)'$  is a continuous linear mapping between  $L^p$  and  $\mathbb{R}$  (which in particular is a LCTVS).

#### Ex 4.2 (The spaces $C(\Omega)$ )

Let  $\Omega$  be a nonempty open subset of  $\mathbb{R}^d$ .

a) Show that there exists a sequence of compact subsets  $(K_n)_{n \in \mathbb{N}}$  such that

$$K_n \subset \text{int}(K_{n+1}) \quad \text{and} \quad \bigcup_{n \in \mathbb{N}} \text{int}(K_n) = \Omega, \quad (\star)$$

where  $\text{int}(K)$  denotes the **interior** of a set  $K$ , i.e. the largest open set contained in  $K$ .

**Hint:** If  $\Omega \neq \mathbb{R}^d$ , work with the distance function to the closed set  $\mathbb{R}^d \setminus \Omega$ .

Let  $C(\Omega)$  be the vector space of all continuous  $f: \Omega \rightarrow \mathbb{R}$  and consider the family of seminorms

$$p_n(f) := \max_{x \in K_n} |f(x)|,$$

where  $(K_n)_{n \in \mathbb{N}}$  is any sequence of compact sets satisfying  $(\star)$ .

b) Show that  $C(\Omega)$  with this family of seminorms is a LCTVS whose topology does not depend on the choice of a sequence  $(K_n)_{n \in \mathbb{N}}$ . Give an example of a translation invariant metric on  $C(\Omega)$  and demonstrate that  $C(\Omega)$  is a Fréchet space. Is it normable?

c) Give an example of a bounded and closed set  $E \subset C(\Omega)$  which is not compact.

#### Solution 4.2 :

a) We can for example put

$$K_n = \{x \in \Omega : |x| \leq n \text{ and } \text{dist}(x, \mathbb{R}^d \setminus \Omega) \geq 1/n\},$$

with the condition  $\text{dist}(x, \mathbb{R}^d \setminus \Omega) \geq 1/n$  left out if  $\Omega = \mathbb{R}^d$ . The interior of  $K_n$  is obtained by the same formula but with  $\leq$  and  $\geq$  replaced by  $<$  and  $>$ , respectively.

**b)** To show that the seminorms  $\{p_n\}_{n \in \mathbb{N}}$  induce a locally convex topology, assume that  $p_n(f) = 0$  for all  $n$ . Then  $f \equiv 0$  on every  $K_n$ , and from  $(\star)$  it follows that  $f \equiv 0$  on  $\Omega$ . Moreover, the sets

$$B_n = \left\{ f \in C(\Omega) : p_n(f) < \frac{1}{n} \right\}$$

form a convex local neighborhood basis of the origin for  $C(\Omega)$ .

Now consider another sequence  $(\tilde{K}_m)_{m \in \mathbb{N}}$  of compact sets that satisfy  $(\star)$  and let  $\tilde{p}_m$  denote the associated seminorms. Fix  $n \in \mathbb{N}$  and let  $B_n = \{f : p_n(f) < 1/n\}$  be a neighborhood basis of 0. Since  $K_n \subset \Omega = \bigcup_m \text{int}(\tilde{K}_m)$  and  $K_n$  is compact, there exist  $m_0$  such that  $K_n \subset \tilde{K}_{m_0}$ . As a consequence  $p_n \leq \tilde{p}_{m_0}$  and  $\tilde{B}_{m_0, n} = \{f : \tilde{p}_{m_0}(f) < 1/n\}$  is an open set in the topology induced by  $(\tilde{p}_m)_{m \in \mathbb{N}}$  such that  $\tilde{B}_{m_0, n} \subset B_n$ . We can demonstrate in the same way that for every neighborhood basis  $\tilde{B}_m = \{f : \tilde{p}_m(f) < 1/m\}$  of 0 there exist  $B_{n_0, m}$  such that  $B_{n_0, m} \subset \tilde{B}_m$ .

Let  $\{f_k\}_k$  be a Cauchy sequence in  $C(\Omega)$ . Then  $p_n(f_j - f_k) \rightarrow 0$  for every  $n$ , as  $j, k \rightarrow +\infty$ . Thus, for each  $n$  the sequence  $\{f_k\}_k$  converges uniformly on  $K_n$  to a continuous function  $f_n$  defined on  $K_n$  (here we employ the completeness of the spaces  $C(K_n)$  with the max norm). Since  $(K_n)_{n \in \mathbb{N}}$  forms an increasing family of subsets of  $\Omega$ , we get from uniqueness of the limits that  $f_n = f_{n+1}$  on each  $K_n$ . Therefore we obtain a continuous function  $f$  on  $\Omega = \bigcup_n \text{int}(K_n)$  such that  $p_n(f_k - f) \rightarrow 0$  for each  $n$  as  $k \rightarrow +\infty$ . This implies that  $C(\Omega)$  is sequentially complete (using question 3.1(a) from Exercise Sheet 3). Because it can be metrized with for example

$$d(f, g) = \sum_{n=1}^{\infty} 2^{-n} \frac{p_n(f - g)}{1 + p_n(f - g)}$$

it is a Fréchet space.

Recall that  $E \subset C(\Omega)$  is bounded iff there are numbers  $M_n > 0$  such that  $p_n(f) \leq M_n$  for every  $f \in E$ . Consider the neighborhood basis  $B_n$  of the origin. For any  $f \in B_n$ , we only know that  $p_n(f) < 1/n$ , so we can always construct a sequence  $f_k \in B_n$  of continuous functions which grow unboundedly on  $K_{n+1} \setminus K_n$ ; this can be done for example using question 3.4(a) of Exercise Sheet 3 to construct a function which is supported on  $\overline{B_r(x_0)}$  for some  $\overline{B_r(x_0)} \subset \Omega \setminus K_n$ , see part (c) below for an alternative explicit construction. Then  $p_{n+1}(f_k) \rightarrow +\infty$  as  $k \rightarrow +\infty$ , so  $B_n$  is not bounded. Kolmogorov's criterion implies that  $C(\Omega)$  is not normable.

**c)** Fix any  $n > 1$ . Then  $K_n \subset \Omega$  is compact and  $\text{int}(K_n) \supset K_{n-1}$  is non-empty. Since  $\text{int}(K_n) \subset \Omega$  is an open set, we can find a compact exhaustion  $(\tilde{K}_k)_k$  of  $\text{int}(K_n)$  as in part (a). Fix  $x_k \in \text{int}(\tilde{K}_{k+1}) \setminus \tilde{K}_k$  and let  $l_k = \min\{\text{dist}(x_k, \tilde{K}_k), \text{dist}(x_k, \partial \tilde{K}_{k+1})\} > 0$ , where  $\partial \tilde{K}_{k+1}$  is the boundary of  $\tilde{K}_{k+1}$ . Consider the functions

$$f_k(x) = \max \{1 - |x - x_k|/l_k, 0\}, \quad x \in \Omega.$$

Then each  $f_k$  is continuous with support in  $\tilde{K}_{k+1} \setminus \text{int} \tilde{K}_k \subset \text{int} K_j$  and  $\max_{\Omega} |f_k| = 1$  for all  $k$ ; thus  $E := \{f_k : k \in \mathbb{N}\}$  is bounded in  $C(\Omega)$ . Since the supports of the  $f_k$  are disjoint, for any  $k \neq k'$ ,  $p_m(f_k - f_{k'}) = 1$  for all  $m > n$ . Since any convergent sequence is Cauchy<sup>1</sup> this implies that any convergent sequence in  $E$  is eventually constant, so  $E$  is closed. In the same way, the sequence  $(f_k)_k \subset E$  has no convergent subsequence, so  $E$  is not compact.

### Ex 4.3 (Continuous functionals)

For each LCTVS  $X$  and a linear functional  $\Lambda$  on  $X$ , show that  $\Lambda$  is continuous :

---

1. Exercise! Use continuity of addition as in Exercise 3.1(c).

- a)  $X = C(\Omega)$ ,  $\Lambda_{x_0}(f) = f(x_0)$ , where  $x_0 \in \Omega$ ;
- b)  $X = C(\Omega)$ ,  $\Lambda_g(f) = \int_{\Omega} f(x)g(x) dx$ , where  $g$  is continuous with compact support in  $\Omega$ ;
- c)  $X = \mathcal{D}_{[a,b]}$ ,  $\Lambda_{x_0}^{(k)}(f) = f^{(k)}(x_0)$ , where  $k \in \mathbb{N}_0$  and  $x_0 \in [a, b]$ .

**Solution 4.3 :** We use the notation of Exercise 4.2. To check continuity, we use the last part of Proposition 1.26.

**a)** It is obvious that  $\Lambda_{x_0}$  is a linear functional on  $C(\Omega)$ . For continuity, let  $K_n$  be a compact subset of  $\Omega$  such that  $x_0 \in K_n$ , see  $(\star)$ . Then  $|\Lambda_{x_0}(f)| = |f(x_0)| \leq p_n(f)$ .

**b)** The linearity of the integral gives the linearity of  $\Lambda_g$ . Let  $K \subset \Omega$  be the support of  $g$ . For continuity, we once more invoke  $(\star)$  to find  $n$  such that  $K \subseteq K_n$ . Then

$$|\Lambda_g(f)| \leq p_n(f) \cdot \int_K |g(x)| dx.$$

**c)** The linearity of  $\Lambda_{x_0}^{(k)}$  follows from the linearity of differentiation. Recall that the topology in  $\mathcal{D}_{[a,b]}$  is induced by the seminorms  $p_n(f) = \max\{|f^{(k)}(x)|, x \in \mathbb{R}, k \leq n\}$ . Thus, for every  $f$ ,  $|\Lambda_{x_0}^{(k)}(f)| \leq p_k(f)$ .

#### Ex 4.4 (Locally compact Hausdorff-TVS are finite dimensional)

Let  $X$  be a Hausdorff topological vector space such that 0 has an open neighborhood  $U$  with  $\overline{U}$  being compact. Show that  $X$  is finite dimensional. You may follow the guideline below :

- a) Show that there exists  $x_1, \dots, x_n \in X$  such that  $\overline{U} \subset \bigcup_{i=1}^n (x_i + \frac{1}{2}U)$ .
- b) Define  $Y = \text{span}(x_1, \dots, x_n)$  and deduce that  $Y$  is closed. Moreover, show that  $\frac{1}{2}U \subset Y + \frac{1}{4}U$ .
- c) Prove by induction that

$$U \subset \bigcap_{n=1}^{+\infty} (Y + 2^{-n}U).$$

- d) Deduce that  $U \subset Y$  and finally  $X \subset Y$  to conclude.