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Ex 4.1 (Linear maps on L? with 0 <p < 1)
Let p € (0,1); let L? denote the space of Lebesgue measurable functions on R for which

o(f) = / @) dz < +oo,

endowed with the topology induced by the metric d(f, g) = p(f — g).

a) Show that the only convex and open subsets of L? are () and LP itself.
Hint: Since L? is a TVS, wlog the open set contains the origin. Given r > 0 and f € L?, write
[ =21 gNigi with A; € (0,1) and ), A\; = 1 and functions g; = /\i_liji, where the intervals
I; form a partition of R such that p(g;) < r for each 1.

b) Let T: L? — X, where X is a LCTVS, be a continuous linear mapping. Prove that
Tf=0 forall fe L.

c¢) Deduce that (LP)" = {0}.

Solution 4.1 :

a) Let U C LP be convex, open and non-empty. We must show U = LP. Since the metric is
translation invariant and convexity is a translation-invariant property of sets, we may assume
0 € U. Thus since the topology is generated by the metric, there exists r > 0 such that
B.={f: p(f) <r}cCU.

It suffices to prove that for any f € L, f € co(B,), the convex hull of B, ; namely f =" | A\, fi
for some functions fi, ..., f, € B, and some Ay, ..., A, € [0,1] with >  A\; = 1. Since we know
nothing about f, it makes sense to start by looking for such a decomposition with A\; = 1/n
for all 7. Recall in sheet 2 we were able to show the unit ball was not convex by considering
convex combinations of functions with disjoint supports, taking this as our inspiration we seek
to choose the f; all with disjoint supports. In particular, we will prove that we can decompose
R into n subintervals I, ..., I,, with disjoint interiors such that

U =R and /I )z < 2 (1)

n

We can then set f; = nf - 1;, (here 1, (z) is the cut-off function equal to 1 if z € I; and 0 if
x ¢ I;) for which

) = [ 1f@)rde <)



p(f)

r

_1
for each ¢ = 1, ..., n. Choosing n > < >l_p sufficiently large (using p < 1) each f; € B, and

SO n
F=> %fi € co(B,)
=1

and we are done.
We will now prove (1). Consider the function

Y

F@w=/ (@) Pde,

—00

This is continuous (e.g. by the monotone convergence theorem) and increasing with lim,_, ., F((y) =

0 and lim,_,c F'(y) = p(f). Thus, for each z; = *p(f),i=1,...,n—1, we can find y; such that
F(y;) = z;. This gives us a partition —0o =: o < y1 < **+ < Yp_1 < Y := 00 such that

/%|ﬂmvdx=F@»—F@Fn=puvn

Yi—1
(with appropriate adjustments at yo at y,,).

b) Let U be a neighbourhood of 0 in X. Since X is a LCTVS, U contains a convex open
neighbourhood U’ of 0. By continuity, 77U’ is open, and by linearity it contains 0 and is
convex (check that if T'f, Tg € U’ then T(tf + (1 —t)g) € U’ for all t € [0,1]). Since T7'U" is
non-empty we deduce from part (a) that it is all of LP i.e. Tf € U’ C U for all f € LP. Since
U was an arbitrary neighbourhood of 0 and X is Haussdorf (as a LCTVS), this implies that
Tf=0forall felLr.

c) Immediate, since any T € (LP)" is a continuous linear mapping between L? and R (which in
particular is a LCTVS).

Ex 4.2 (The spaces C(f2))
Let 2 be a nonempty open subset of R?.

a) Show that there exists a sequence of compact subsets (K, )nen such that
K, C int(K,+1) and | Jint(K,) =Q, (%)
neN

where int(K') denotes the interior of a set K, i.e. the largest open set contained in K.
Hint: If Q # RY, work with the distance function to the closed set R\ Q.

Let C(€2) be the vector space of all continuous f: @ — R and consider the family of seminorms

Pa(f) = max |f(z)],

€Ky,

where (K, )nen is any sequence of compact sets satisfying (x).

b) Show that C(€2) with this family of seminorms is a LCTVS whose topology does not
depend on the choice of a sequence (K, ),en. Give an example of a translation invariant
metric on C(2) and demonstrate that C'(Q2) is a Fréchet space. Is it normable ?

c¢) Give an example of a bounded and closed set E C C(2) which is not compact.

Solution 4.2 :
a) We can for example put

K,={z€Q: |z| <n and dist(z,R*\ Q) > 1/n},



with the condition dist(z,R?\ Q) > 1/n left out if Q = R?%. The interior of K, is obtained by
the same formula but with < and > replaced by < and >, respectively.

b) To show that the seminorms {p, },en induce a locally convex topology, assume that p,(f) =0
for all n. Then f =0 on every K,, and from (%) it follows that f = 0 on Q. Moreover, the sets

—{sec: nin<.}

form a convex local neighborhood basis of the origin for C'(12).

Now consider another sequence (K, )men of compact sets that satisfy (x) and let p,, denote the
associated seminorms. Fix n € N and let B, = {f : p.(f) < 1/n} be a neighborhood basis
of 0. Since K,, C Q = {J,, int(K )m and K, is compact, there exist mg such that K, C K.
As a consequence p, < P, and Bpon = {f : Pmo(f) < 1/n} is an open set in the topology
induced by (5 )men such that B,,, , C B,. We can demonstrate in the same way that for every
neighborhood basis B,, = {f :om(f) < 1/m} of O there exist By, ,, such that B, , C B,,.

Let {fx}r be a Cauchy sequence in C(2). Then p,(f; — fr) — 0 for every n, as j,k — +oo.
Thus, for each n the sequence {f;}, converges uniformly on K, to a continuous function f,
defined on K, (here we employ the completeness of the spaces C'(K,,) with the max norm).
Since (K, )nen forms an increasing family of subsets of 2, we get from uniqueness of the limits
that f, = fu,+1 on each K,,. Therefore we obtain a continuous function f on Q = |, int(K,)
such that p,(fx—f) — 0 for each n as k — +o00. This implies that C'(2) is sequentially complete
(using question 3.1(a) from Exercise Sheet 3). Because it can be metrized with for example

o) =3 T

n=1
it is a Fréchet space.

Recall that £ C C(€2) is bounded iff there are numbers M,, > 0 such that p,(f) < M, for every
f € E. Consider the neighborhood basis B,, of the origin. For any f € B,,, we only know that
pn(f) < 1/n, so we can always construct a sequence fi, € B, of continuous functions which
grow unboundedly on K, 1\ K, ; this can be done for example using question 3.4(a) of Exercise
Sheet 3 to construct a function which is supported on B,(xg) for some B,(xg) C Q\K,, see
part (c) below for an alternative explicit construction. Then p,1(fx) — +00 as k — +00, so
B, is not bounded. Kolmogorov’s criterion implies that C'(€2) is not normable.

c) Fix any n > 1. Then K, C {2 is compact and int(K,) D K, is non-empty. Since int(X,) C
Q) is an open set, we can find a compact exhaustion (Kk)k of int(K,) as in part (a). Fix
T € mt(KkH) \ K. and let [, = mln{dlst(xk,Kk) dlst(xk,(?KkH)} > 0, where 8Kk+1 is the
boundary of K k+1- Consider the functions

fr(x) = max {1 — |z — x| /lx, 0}, z €

Then each fj is continuous with support in K ka1 \ int K, C intK ; and maxg | fx| = 1 for all k;
thus F := {fy : k£ € N} is bounded in C(2). Since the supports of the f; are disjoint, for any
k#k, pm(fr — frr) = 1 for all m > n. Since any convergent sequence is Cauchy ! this implies
that any convergent sequence in F is eventually constant, so E is closed. In the same way, the
sequence (fx)r C F has no convergent subsequence, so F is not compact.

Ex 4.3 (Continuous functionals)
For each LCTVS X and a linear functional A on X, show that A is continuous :

1. Exercise! Use continuity of addition as in Exercise 3.1(c).



a) X =C(Q), Ay, (f) = f(zo), where 2 € Q;
b) X =C(Q), Ay(f) = [, f(x)g(x) dz, where g is continuous with compact support in §;
c) X = Diay) A&’;)(f) = f®)(z¢), where k € Ny and z¢ € [a, b].

Solution 4.3 : We use the notation of Exercise 4.2. To check continuity, we use the last part
of Proposition 1.26.

a) It is obvious that A,, is a linear functional on C(2). For continuity, let K, be a compact
subset of Q such that zq € K, see (x). Then |A,,(f)| = |f(zo)| < pu(f)-

b) The linearity of the integral gives the linearity of A,. Let K C € be the support of g. For
continuity, we once more invoke (%) to find n such that K C K,,. Then

A ()] < pulf) - /K g(2)| e

c¢) The linearity of Agf)) follows from the linearity of differentiation. Recall that the topology in
Dy, is induced by the seminorms p,(f) = max{|f®(z)|,z € R, k < n}. Thus, for every f,

AL (F)] < pelf)-

Ex 4.4 (Locally compact Hausdorff-TVS are finite dimensional)
Let X be a Hausdorff topological vector space such that 0 has an open neighborhood U with
U being compact. Show that X is finite dimensional. You may follow the guideline below :
a) Show that there exists z1,...,z, € X such that U C J}_,(z; + 3U).
b) Define Y = span(xy,...,x,) and deduce that Y is closed. Moreover, show that %U C
Y +4U.
c¢) Prove by induction that
+o0
Uc (Y +270).
n=1

d) Deduce that U C Y and finally X C Y to conclude.



