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Ex 4.1 (Linear maps on Lp with 0 < p < 1)
Let p ∈ (0, 1) ; let Lp denote the space of Lebesgue measurable functions on R for which

ρ(f) =

∫
R
|f(x)|p dx < +∞,

endowed with the topology induced by the metric d(f, g) = ρ(f − g).

a) Show that the only convex and open subsets of Lp are ∅ and Lp itself.
Hint: Since Lp is a TVS, wlog the open set contains the origin. Given r > 0 and f ∈ Lp, write

f =
∑n

i=0 λigi with λi ∈ (0, 1) and
∑

i λi = 1 and functions gi = λ−1
i fχIi , where the intervals

Ii form a partition of R such that ρ(gi) < r for each i.

b) Let T : Lp → X, where X is a LCTVS, be a continuous linear mapping. Prove that

Tf = 0 for all f ∈ Lp.

c) Deduce that (Lp)′ = {0}.

Solution 4.1 :
a) Let U ⊂ Lp be convex, open and non-empty. We must show U = Lp. Since the metric is
translation invariant and convexity is a translation-invariant property of sets, we may assume
0 ∈ U . Thus since the topology is generated by the metric, there exists r > 0 such that
Br = {f : ρ(f) < r} ⊂ U .
It suffices to prove that for any f ∈ Lp, f ∈ co(Br), the convex hull of Br ; namely f =

∑n
i=1 λifi

for some functions f1, ..., fn ∈ Br and some λ1, ..., λn ∈ [0, 1] with
∑n

i=1 λi = 1. Since we know
nothing about f , it makes sense to start by looking for such a decomposition with λi = 1/n
for all i. Recall in sheet 2 we were able to show the unit ball was not convex by considering
convex combinations of functions with disjoint supports, taking this as our inspiration we seek
to choose the fi all with disjoint supports. In particular, we will prove that we can decompose
R into n subintervals I1, ..., In with disjoint interiors such that

n⋃
j=1

Ij = R and

∫
Ii

|f(x)|pdx ≤ ρ(f)

n
(1)

We can then set fi = nf · 1Ii (here 1Ii(x) is the cut-off function equal to 1 if x ∈ Ii and 0 if
x /∈ Ii) for which

ρ(fi) = np

∫
Ii

|f(x)|pdx ≤ np−1ρ(f)



for each i = 1, ..., n. Choosing n >
(

ρ(f)
r

) 1
1−p

sufficiently large (using p < 1) each fi ∈ Br and
so

f =
n∑

i=1

1

n
fi ∈ co(Br)

and we are done.
We will now prove (1). Consider the function

F (y) =

∫ y

−∞
|f(x)|pdx,

This is continuous (e.g. by the monotone convergence theorem) and increasing with limy→−∞ F (y) =
0 and limy→∞ F (y) = ρ(f). Thus, for each zi =

i
n
ρ(f), i = 1, . . . , n−1, we can find yi such that

F (yi) = zi. This gives us a partition −∞ =: y0 < y1 < · · · < yn−1 < yn := ∞ such that∫ yi

yi−1

|f(x)|p dx = F (yi)− F (yi−1) = ρ(f)/n.

(with appropriate adjustments at y0 at yn).

b) Let U be a neighbourhood of 0 in X. Since X is a LCTVS, U contains a convex open
neighbourhood U ′ of 0. By continuity, T−1U ′ is open, and by linearity it contains 0 and is
convex (check that if Tf , Tg ∈ U ′ then T (tf + (1− t)g) ∈ U ′ for all t ∈ [0, 1]). Since T−1U ′ is
non-empty we deduce from part (a) that it is all of Lp, i.e. Tf ∈ U ′ ⊂ U for all f ∈ Lp. Since
U was an arbitrary neighbourhood of 0 and X is Haussdorf (as a LCTVS), this implies that
Tf = 0 for all f ∈ Lp.
c) Immediate, since any T ∈ (Lp)′ is a continuous linear mapping between Lp and R (which in
particular is a LCTVS).

Ex 4.2 (The spaces C(Ω))
Let Ω be a nonempty open subset of Rd.

a) Show that there exists a sequence of compact subsets (Kn)n∈N such that

Kn ⊂ int(Kn+1) and
⋃
n∈N

int(Kn) = Ω, (⋆)

where int(K) denotes the interior of a set K, i.e. the largest open set contained in K.

Hint: If Ω ̸= Rd, work with the distance function to the closed set Rd \ Ω.

Let C(Ω) be the vector space of all continuous f : Ω → R and consider the family of seminorms

pn(f) := max
x∈Kn

|f(x)|,

where (Kn)n∈N is any sequence of compact sets satisfying (⋆).

b) Show that C(Ω) with this family of seminorms is a LCTVS whose topology does not
depend on the choice of a sequence (Kn)n∈N. Give an example of a translation invariant
metric on C(Ω) and demonstrate that C(Ω) is a Fréchet space. Is it normable ?

c) Give an example of a bounded and closed set E ⊂ C(Ω) which is not compact.

Solution 4.2 :
a) We can for example put

Kn =
{
x ∈ Ω : |x| ≤ n and dist(x,Rd \ Ω) ≥ 1/n

}
,



with the condition dist(x,Rd \ Ω) ≥ 1/n left out if Ω = Rd. The interior of Kn is obtained by
the same formula but with ≤ and ≥ replaced by < and >, respectively.

b) To show that the seminorms {pn}n∈N induce a locally convex topology, assume that pn(f) = 0
for all n. Then f ≡ 0 on every Kn, and from (⋆) it follows that f ≡ 0 on Ω. Moreover, the sets

Bn =
{
f ∈ C(Ω) : pn(f) <

1

n

}
form a convex local neighborhood basis of the origin for C(Ω).

Now consider another sequence (K̃m)m∈N of compact sets that satisfy (⋆) and let p̃m denote the
associated seminorms. Fix n ∈ N and let Bn = {f : pn(f) < 1/n} be a neighborhood basis
of 0. Since Kn ⊂ Ω =

⋃
m int(K̃)m and Kn is compact, there exist m0 such that Kn ⊂ K̃m0 .

As a consequence pn ≤ p̃m0 and B̃m0,n = {f : p̃m0(f) < 1/n} is an open set in the topology
induced by (p̃m)m∈N such that B̃m0,n ⊂ Bn. We can demonstrate in the same way that for every
neighborhood basis B̃m = {f : p̃m(f) < 1/m} of 0 there exist Bn0,m such that Bn0,m ⊂ B̃m.

Let {fk}k be a Cauchy sequence in C(Ω). Then pn(fj − fk) → 0 for every n, as j, k → +∞.
Thus, for each n the sequence {fk}k converges uniformly on Kn to a continuous function fn
defined on Kn (here we employ the completeness of the spaces C(Kn) with the max norm).
Since (Kn)n∈N forms an increasing family of subsets of Ω, we get from uniqueness of the limits
that fn = fn+1 on each Kn. Therefore we obtain a continuous function f on Ω =

⋃
n int(Kn)

such that pn(fk−f) → 0 for each n as k → +∞. This implies that C(Ω) is sequentially complete
(using question 3.1(a) from Exercise Sheet 3). Because it can be metrized with for example

d(f, g) =
∞∑
n=1

2−n pn(f − g)

1 + pn(f − g)

it is a Fréchet space.

Recall that E ⊂ C(Ω) is bounded iff there are numbers Mn > 0 such that pn(f) ≤ Mn for every
f ∈ E. Consider the neighborhood basis Bn of the origin. For any f ∈ Bn, we only know that
pn(f) < 1/n, so we can always construct a sequence fk ∈ Bn of continuous functions which
grow unboundedly on Kn+1\Kn ; this can be done for example using question 3.4(a) of Exercise
Sheet 3 to construct a function which is supported on Br(x0) for some Br(x0) ⊂ Ω\Kn, see
part (c) below for an alternative explicit construction. Then pn+1(fk) → +∞ as k → +∞, so
Bn is not bounded. Kolmogorov’s criterion implies that C(Ω) is not normable.

c) Fix any n > 1. Then Kn ⊂ Ω is compact and int(Kn) ⊃ Kn−1 is non-empty. Since int(Kn) ⊂
Ω is an open set, we can find a compact exhaustion (K̃k)k of int(Kn) as in part (a). Fix

xk ∈ int(K̃k+1) \ K̃k and let lk = min{dist(xk, K̃k), dist(xk, ∂K̃k+1)} > 0, where ∂K̃k+1 is the

boundary of K̃k+1. Consider the functions

fk(x) = max
{
1− |x− xk|/lk, 0

}
, x ∈ Ω.

Then each fk is continuous with support in K̃k+1 \ intK̃k ⊂ intKj and maxΩ |fk| = 1 for all k ;
thus E := {fk : k ∈ N} is bounded in C(Ω). Since the supports of the fk are disjoint, for any
k ̸= k′, pm(fk − fk′) = 1 for all m > n. Since any convergent sequence is Cauchy 1 this implies
that any convergent sequence in E is eventually constant, so E is closed. In the same way, the
sequence (fk)k ⊂ E has no convergent subsequence, so E is not compact.

Ex 4.3 (Continuous functionals)
For each LCTVS X and a linear functional Λ on X, show that Λ is continuous :

1. Exercise ! Use continuity of addition as in Exercise 3.1(c).



a) X = C(Ω), Λx0(f) = f(x0), where x0 ∈ Ω ;

b) X = C(Ω), Λg(f) =
∫
Ω
f(x)g(x) dx, where g is continuous with compact support in Ω ;

c) X = D[a,b], Λ
(k)
x0 (f) = f (k)(x0), where k ∈ N0 and x0 ∈ [a, b].

Solution 4.3 : We use the notation of Exercise 4.2. To check continuity, we use the last part
of Proposition 1.26.

a) It is obvious that Λx0 is a linear functional on C(Ω). For continuity, let Kn be a compact
subset of Ω such that x0 ∈ Kn, see (⋆). Then |Λx0(f)| = |f(x0)| ≤ pn(f).

b) The linearity of the integral gives the linearity of Λg. Let K ⊂ Ω be the support of g. For
continuity, we once more invoke (⋆) to find n such that K ⊆ Kn. Then

|Λg(f)| ≤ pn(f) ·
∫
K

|g(x)| dx.

c) The linearity of Λ
(k)
x0 follows from the linearity of differentiation. Recall that the topology in

D[a,b] is induced by the seminorms pn(f) = max{|f (k)(x)|, x ∈ R, k ≤ n}. Thus, for every f ,

|Λ(k)
x0 (f)| ≤ pk(f).

Ex 4.4 (Locally compact Hausdorff-TVS are finite dimensional)
Let X be a Hausdorff topological vector space such that 0 has an open neighborhood U with
U being compact. Show that X is finite dimensional. You may follow the guideline below :

a) Show that there exists x1, . . . , xn ∈ X such that U ⊂
⋃n

i=1(xi +
1
2
U).

b) Define Y = span(x1, . . . , xn) and deduce that Y is closed. Moreover, show that 1
2
U ⊂

Y + 1
4
U .

c) Prove by induction that

U ⊂
+∞⋂
n=1

(Y + 2−nU).

d) Deduce that U ⊂ Y and finally X ⊂ Y to conclude.


